The Riemann - Hilbert Problem for Holonomic Systems
نویسندگان
چکیده
The purpose of this paper is to give a proof to the equivalence of the derived category of holonomic systems and that of constructible sheaves. Let X be a paracompact complex manifold and let ® x and 0 x be the sheaf of differential operators and holomorphic functions, respectively. We denote by Mod(^z) the abelian category of left ^^-Modules and by D(^) its derived category. Let ~D^(^x) denote the full sub-category of D(^z) consisting of bounded complexes whose cohomology groups are regular holonomic ([KK]). By replacing @x with @*x, the sheaf of differential operators of infinite order, and "regular holonomic" with "holonomic," we similarly define Mod(^J), D(SJ) and DU^*)Let us denote by Mod(X) the category of sheaves of C-vector spaces on X and by D(X) its derived category. We denote by Dc(-X) the full sub -category of D(X) consisting of bounded complexes whose cohomology groups are constructible. Let us define
منابع مشابه
$L_{p;r} $ spaces: Cauchy Singular Integral, Hardy Classes and Riemann-Hilbert Problem in this Framework
In the present work the space $L_{p;r} $ which is continuously embedded into $L_{p} $ is introduced. The corresponding Hardy spaces of analytic functions are defined as well. Some properties of the functions from these spaces are studied. The analogs of some results in the classical theory of Hardy spaces are proved for the new spaces. It is shown that the Cauchy singular integral operator is...
متن کاملThe Riemann-hilbert Correspondence for Algebraic Stacks
Using the theory ∞-categories we construct derived (dg-)categories of regular, holonomic D-modules and algebraically constructible sheaves on a complex smooth algebraic stack. We construct a natural ∞-categorical equivalence between these two categories generalising the classical Riemann-Hilbert correspondence.
متن کاملModuli of regular holonomic D-modules with normal crossing singularities
This paper solves the global moduli problem for regular holonomic Dmodules with normal crossing singularities on a nonsingular complex projective variety. This is done by introducing a level structure (which gives rise to “pre-D-modules”), and then introducing a notion of (semi-)stability and applying Geometric Invariant Theory to construct a coarse moduli scheme for semistable pre-D-modules. A...
متن کاملSelf-similar solutions of the Riemann problem for two-dimensional systems of conservation laws
In this paper, a new approach is applied to study the self-similar solutions of 2×2 systems of nonlinear hyperbolic conservation laws. A notion of characteristic directions is introduced and then used to construct local and smooth solutions of the associated Riemann problem
متن کاملA more accurate half-discrete Hardy-Hilbert-type inequality with the best possible constant factor related to the extended Riemann-Zeta function
By the method of weight coefficients, techniques of real analysis and Hermite-Hadamard's inequality, a half-discrete Hardy-Hilbert-type inequality related to the kernel of the hyperbolic cosecant function with the best possible constant factor expressed in terms of the extended Riemann-zeta function is proved. The more accurate equivalent forms, the operator expressions with the norm, the rever...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005